Disulfide formation in plant storage vacuoles permits assembly of a multimeric lectin.
نویسندگان
چکیده
The ER (endoplasmic reticulum) has long been considered the plant cell compartment within which protein disulfide bond formation occurs. Members of the ER-located PDI (protein disulfide isomerase) family are responsible for oxidizing, reducing and isomerizing disulfide bonds, as well as functioning as chaperones to newly synthesized proteins. In the present study we demonstrate that an abundant 7S lectin of the castor oil seed protein storage vacuole, RCA (Ricinus communis agglutinin 1), is folded in the ER as disulfide bonded A-B dimers in both vegetative cells of tobacco leaf and in castor oil seed endosperm, but that these assemble into (A-B)2 disulfide-bonded tetramers only after Golgi-mediated delivery to the storage vacuoles in the producing endosperm tissue. These observations reveal an alternative and novel site conducive for disulfide bond formation in plant cells.
منابع مشابه
Stepwise Assembly of Fibrinogen Is Assisted by the Endoplasmic Reticulum Lectin-Chaperone System in HepG2 Cells
The endoplasmic reticulum (ER) plays essential roles in protein folding and assembly of secretory proteins. ER-resident molecular chaperones and related enzymes assist in protein maturation by co-operated interactions and modifications. However, the folding/assembly of multimeric proteins is not well understood. Here, we show that the maturation of fibrinogen, a hexameric secretory protein (two...
متن کاملA carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco.
Barley lectin is synthesized as a preproprotein with a glycosylated carboxyl-terminal propeptide (CTPP) that is removed before or concomitant with deposition of the mature protein in vacuoles. Expression of a cDNA clone encoding barley lectin in transformed tobacco plants results in the correct processing, maturation, and accumulation of active barley lectin in vacuoles [Wilkins, T.A., Bednarek...
متن کاملArabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds.
Protein disulfide isomerase (PDI) oxidizes, reduces, and isomerizes disulfide bonds, modulates redox responses, and chaperones proteins. The Arabidopsis thaliana genome contains 12 PDI genes, but little is known about their subcellular locations and functions. We demonstrate that PDI5 is expressed in endothelial cells about to undergo programmed cell death (PCD) in developing seeds. PDI5 intera...
متن کاملProtein body formation in the endoplasmic reticulum as an evolution of storage protein sorting to vacuoles: insights from maize γ-zein
The albumin and globulin seed storage proteins present in all plants accumulate in storage vacuoles. Prolamins, which are the major proteins in cereal seeds and are present only there, instead accumulate within the endoplasmic reticulum (ER) lumen as very large insoluble polymers termed protein bodies. Inter-chain disulfide bonds play a major role in polymerization and insolubility of many prol...
متن کاملDisulfide-dependent multimeric assembly of resistin family hormones.
Resistin, founding member of the resistin-like molecule (RELM) hormone family, is secreted selectively from adipocytes and induces liver-specific antagonism of insulin action, thus providing a potential molecular link between obesity and diabetes. Crystal structures of resistin and RELMbeta reveal an unusual multimeric structure. Each protomer comprises a carboxy-terminal disulfide-rich beta-sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 427 3 شماره
صفحات -
تاریخ انتشار 2010